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Abstract 

This paper develops a set of principles for 
green data mining, related to the key stages of 
business understanding, data understanding, 
data preparation, modeling, evaluation, and 
deployment. The principles are grounded in a 
review of the Cross Industry Standard 
Process for Data mining (CRISP-DM) model 
and relevant literature on data mining 
methods and Green IT. We describe how data 
scientists can contribute to designing 
environmentally friendly data mining 
processes, for instance, by using green 
energy, choosing between make-or-buy, 
exploiting approaches to data reduction 
based on business understanding or pure 
statistics, or choosing energy friendly models. 

 
1. Introduction 
The use of computing power coupled with the 

unprecedented availability of data provide ample 
opportunity to improve energy efficiency . 

However, they are also an increasingly 
relevant source of energy consumption and 
associated carbon emissions. Data centers 
consumed about 70 billion kWh in 2016 in the 
United States alone , and the total consumption 
of all IT is estimated to be close to 5% of total 
energy consumption. In response to this 
increasing amount of energy used by IT, 
Greenpeace published the “Guide to Building 
the Green Internet” , promoting “a more wide 
spread adaption in best practices” for energy 
efficient data center design. They demand that 
“data center operators and customers should 
regularly report their energy performance and 
establish transparent energy savings targets.” 

Electricity consumption is costly—it involves 
various detrimental effects on nature and 
society, ranging from bird deaths by wind 
turbines, on to severe air pollution and CO2 
emissions by coal power plants, and the risk of 
catastrophes stemming from nuclear power 
plants. 

These concerns are partially addressed by 
current initiatives under notions such as green 
information systems (Green IS) or green 
information technology (Green IT) , but 
environmentally friendly data mining is a novel 
topic. 

Data scientists often leverage a large pool of 
computational resources using sophisticated and 
computationally costly machine learning 
techniques to extract knowledge and insights 
from data. Though existing processes such as the 
Cross Industry Standard Process for Data mining 
(CRISP-DM) provide some   guidance   on  how  
to   execute   a   data mining project,  the  skills  of  
a  data  scientist  heavily rely on creativity 
involving many degrees of freedom, often 
including the choice of tools, models, and data 
sources. 

It is against this background that, in this paper, 
we develop guidelines for data scientists to 
implement more environmentally friendly 
practices that can complement 
technology-focused perspectives aiming to 
design more energy efficient IT-based systems. 
Specifically, we are focusing attention on one 
important area of data science—data mining. 
Data mining can be described as knowledge 
discovery from data or in terms of different 
activities as collecting, cleaning, processing, 
analyzing and gaining useful insights from data . 
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We ask: How can data scientists implement more 
environmentally friendly data mining processes? 

The remainder of this paper is structured  as 
follows. We first describe our methodology. We 
then review the data mining process and develop 
a set of principles for green data mining. We 
conclude by discussing limitations and future 
work. 

 
2. Methodology 
We derived our principles by analyzing the 

CRISP- DM data mining process and literature 
on green IT and data mining. In a first step, we 
identified factors determining energy 
consumption. In a second step, we identified 
individual steps of the CRISP-DM process by 
investigating possibilities for reduction of each 
factor. We limited our analysis to those  aspects 
that can be directly influenced by data scientists, 
including the choice of data, its representation, 
as well as processes and techniques used 
throughout the data analysis process. We do not 
target the development of novel data mining 
algorithms for specific problems or improving 
hardware or software, though some of our 
insights might be helpful in guiding such 
developments. 

We conducted a narrative literature  review on 
green IT, green IS, and data mining because our 
goal was to investigate elementary factors and 
research outcomes related to these areas of 
research. Green data science is a novel field and, 
therefore, is more amenable to a qualitative 
approach such as narrative literature review than 
a more quantitative approach detailing the 
current-state-of-research, as done for a 
descriptive review. Our focus was on using 
established online databases from computer 
science as well as information systems such as 
IEEE Xplore, Pro Quest (ABI/IN Form),
 Science Direct (Elsevier), AIS electronic 
library and the ACM digital library. We did not 
limit ourselves to journals since new ideas are 
often presented first at academic conferences 
and a significant body of works, in particular in 
the field of computer science, only appear as 
conference articles. 

 
3. The data mining process 
There are multiple data mining processes , 

most of which share common phases. 
CRISP-DM is arguably the most widely known 
and practiced model, attending  to business and 
data understanding, data preparation, modeling, 
evaluation and deployment (Figure 1). The 
business understanding phase clarifies project 
objectives and business requirements, which are 
then translated into a data mining problem. 
There are unsupervised data mining problems 
including association pattern mining and 
clustering as well as supervised approaches like 
classification  .  Data  understanding   typically 
requires initial data selection or collection. Data 
is first analyzed in an exploratory fashion to get a 
basic understanding of the data in the business 
context. Exploratory   analysis   supports   the   
development of hypothesis by identifying 
patterns in the data [3]. It allows to get first 
insights as well as to identify data quality 
problems. Data preparation includes using raw 
data to derive data that can be fed into the 
models. Activities include data selection, 
transformation, and cleaning. The data might 
have to be prepared separately for each model. 
The modeling phase consists of defining suitable 
models, selecting a model, and adapting the 
model, for instance, optimizing its parameters to 
solve the data mining problem. Computational 
evaluation of the model is part of the model 
selection process. Every data mining problem 
can be tackled using different strategies and 
models. Generally, there is no clear consensus 
about which model is best for a task. 
Consequently, some form of trial and error can 
often not be avoided. This is supported by the 
“no free lunch” theorem stating that any 
algorithm outperforms any other algorithm on 
some datasets as well as by empirical studies 

. The choice of models  depends  on  many  
factors such as data (dimensionality, number of 
observations, structuredness), data mining 
objectives (need for best possible expected 
outcome, need to explain results), and cost 
(focus on minimum human effort to build or 
operate). From the perspective of green data 
mining, performance is  assessed in terms  of
 energy consumption for model training and 
model use, for instance, for making predictions. 
For the evaluation phase the main goal is to 
review all steps involved in the construction of 
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the model, and to verify whether  the final model 
meets the defined business objectives. If the best 
model meets the evaluation criteria, then it is 
deployed. Deployment ranges from fabricating a 
report presenting the findings in an 
easy-to-comprehend manner to implementing a 
long running system. Such a system might
 learn continuously while  often performing 
a prediction task. 

 
4. Principles of green data mining 

Grounded in concepts and ideas from the 
literature on Green IT as well as data mining and 
its processes, we identified factors determining 
the ecological footprint of data mining and we 
developed principles for reducing this footprint 
(Table 1, Figure 1). 

Table 1: Factors and methods related to green data mining 
 

Factor Sub factors Methods for Green Data Mining 
Project 
Objectives and 
Execution 

Performance specification; 
Make, buy, share 

Transfer Learning 

Data Quantity; Quality;
 Representation; Data 
acquisition method; Data 
storage 

Sampling, Active Learning, 
Dimensionality Reduction, Compression, 
Change of Data Representation, Data 
Aggregation 

Computation 
(Analysis) 

Structuring of computation; 
Choice/Training of models; 
Training of models 

Reuse of intermediate results; 
Approximate Models/Algorithms 

IT Infrastructure Hardware, e.g., CPU, Storage  
 

Green IT discusses institutional perspectives , 
the role of users, including their behavior and 
beliefs when using IT-based systems as well as 
technical concerns . Topics include 
computational methods, their implementation in 
software , focus should be on the most energy 
consuming factors. This analysis can be 
performed by investigating the factors listed in 

Table 1 and analyzing each process step shown 
in Figure 1. 
Which process steps and factors dominate 
energy consumption depends on the goals and 
particularities of the data mining endeavor. 
Project objectives such as predictive accuracy or 
required confidence in the analysis are very 
likely to hardware components of computers , 
have a profound impact on energy consumption, 

Figure 1: Crisp DM with “green” design principles 
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since datacenters, cloud computing , parallel 
data processing (for big data) , as well as 
organizational and business aspects such as 
sustainable value chains, green oriented 
procurement,  and adoption of Green IT . Loeser 
et al.discussed constructs and practices from 
Green IT (and IS) with respect to sourcing, 
operations, disposal, governance and end 
products. 

Current  literature  on   data   mining ,   in 
particular  data  mining  processes ,  does  not 
explicitly discuss environmental concerns of 
data mining but touches upon aspects related 
to computational efficiency and storage such as 
data reduction and approximatealgorithms. 

Next, we describe principles of green data 
mining related to the different steps of the 
CRISP-DM process. We first elaborate on those 
principles that pertain to all stages of the process 
(principles 1-3 in Figure 1), before we then turn 
to those which only address specific stages 
(principles4-8). 

 
Principle #1: Identify and focus on the most 

energy consuming phases 
To maximize the outcome of time invested 

into making data mining more environmentally 
friendly,the they often indirectly influence the
 choice of computational methods and data. 
For example, recent “deep learning” methods 
have outperformed other machine learning 
approaches for multipleclassification 

tasks. A data scientist might turn to deep 
learning to meet certain project objectives, 
because it achieves state-of-the-art performance 
with respect to accuracy but, at the same time, 
requires lots of data and computation. Data 
preparation does often only require simple 
techniques, but it might be dominating in terms 
of energy consumption if complex 
computationally expensive methods are needed 
to extract features from the data that are used in 
later phases of the process. Deployment might be 
the dominating step if a system is built for 
continuous usage with large amounts of data. 
Still, deployment might contribute very little to 
the overall energy consumption compared to 
model selection, if the goal of the data mining 
project is to derive a report supporting a 
one-timedecision. 

 

Principle #2: Share and re-use data, 
models, frameworks and skills 

A data scientist might control make-or-buy 
decisions. For example, for marketing purposes, 
she might choose to acquire data from social 
media channels such as Twitter or Facebook and 
conduct the analysis by herself. She might also 
acquire models (implemented in software) to 
conduct the analysis. She might also decide to 
consult an external company to conduct the 
analysis or to obtain models. From an 
environmental perspective, outsourcing can be 
preferable if the contractor is more 
energy-efficient in extracting the demanded 
information, for instance, because of their prior 
experience and specialization, more energy 
efficient infrastructure, or even possession of 
relevant data. On a global scale, outsourcing of 
data analysis has the potential to involve less 
computation and to save energy. 

Progress in the field of data science also relies 
on publicly available data, models, and 
development frameworks. Initiatives to make 
data available by research  institutions   and  by  
governments  help create entire ecosystems . 
State-of-the-art tools to develop (deep learning) 
models such as Google’s Tensorflow are made 
freely available by large corporations. For such 
frameworks there are also 
numerouspre-trainedmodelsfreelyavailable,e.g.,
for image recognition based on the Imagenet 
dataset . Transfer learning is a technique that 
enables using knowledge from existing models 
trained for a specific task and dataset on different 
tasks . The idea is 

that some “knowledge” of a model can be 
transferred to another domain. Deep learning 
networks might benefit from reusing parameters 
or layers of an already trained network to reduce 
time (and energy consumption) on developing a 
new model. Thus, a green data scientist should 
also contribute data, models, and potentially 
extensions to frameworks to encouragere-use. 

 
Principle #3: Use green energy 
The use of renewable (“green”) energy such as 

solar or wind should be maximized. 
Conceptually, the idea is to align computation 
with the availability of green energy. Technical 
realizations for data processing tasks for 
distributed data processing platforms (e.g., 
Hadoop) have beeninvestigated. 
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A system must predict the availability of green 
energy as well as brown energy and derive a 
schedule to maximize green energy use and to 
avoid using brown power at peak demand times. 
This strategy might also have a positive impact 
on energy costs as these increase with demand. 
The data scientist should identify the maximum 
possible slack in executing data processing tasks 
based on business objectives. More flexible 
scheduling allows for using more green energy. 

 
 Business understanding 
The business understanding phase does 

typically not involve computation and as such 
generally does not contribute directly to the 
energy consumption. Still, understanding the 
business requirements and trends in the industry 
sector helps anticipate factors that influence 
energy consumption of later process steps, such 
as “What data are relevant and should be 
collected?” or “What precision of numbers is 
needed (over time)?” or “How frequently is a 
deployed system used?” or “How does the value 
of data change over time?” 

 
Principle #4: Understand value, then collect 

and forget 
Following the idea that “Data is the new 

oil”—a statement coined by Clive Humbly in 
2006—it seems natural to collect as much data as 
possible, in particular given that storage is cheap 
and data might generate value “eventually.” It is 
not uncommon that data can  be obtained almost 
for free, for instance, in the form of trace data 
generated by users visiting a webpage. But, more 
data increases costs (due to storage and 
processing), requires more energy, impacts 
system performance and complexity and, 
additionally, enhances the risk of information 
overload. Query times to a database, for 
instance, increase with the amount of data stored 
in the database. The idea of collecting data only 
for the sake of collection has been 
criticized–“less data can be more value” . The 
data  scientist should thus try to determine what 
data is relevant for the business or task at hand. 
Moreover, the quality of the data should be taken 
into consideration because data of inferior 
quality might require non-negligible effort for 
data cleaning. 

Not all data has the same value. Even when 
data consists of a set of observations of the same 

kind, certain observations might be more 
valuable than others. For example, for 
observations, which should be split into classes, 
“difficult” to classify observations  are often 
more helpful in training data mining models than 
“easy” to classify observations. Though 
computational methods can often determine the 
relevance of data with respect to well-defined 
metrics, a holistic understanding of the business, 
its objectives, data, and analytical methodology 
is essential to limit the collection of data. 
Leading data analytics companies such as 
Google embrace the idea of computing on more 
“little” data, that is, samples. 

This reasoning is well-founded not only based 
on statistical models, but also because models 
benefit from training data in a highly non-linear 
fashion with decreasing marginal gains given 
more data. 

Therefore,insomescenarios,reducingthevolum
eof data might be feasible with considerable 
impact on energy consumption but only minor 
changes forother relevant metrics. Since each 
model comes with its own strengths and 
weaknesses related to interpretability, 
robustness, speed of learning, etc., the overall 
assessment of advantages and disadvantages 
must be carefully conducted and aligned with 
underlying business objectives. 

 
 Dataunderstanding 
Principle #5: Reduce data 
The data scientist might face the choice of 

what data to collect (or store). This choice must 
be made with great foresight in order not to miss 
any opportunity for data-driven value creation. 
Business understanding as well as an in depth 
understanding of the data are necessary. 
However, there are also multiple helpful 
techniques based on computational and 
statistical methods that might be supportive. We 
describe strategies to minimize the amount of 
data to be collected or used for training such as 
sampling and dimensionality reduction. These 
strategies can be employed to limit the number 
of attributes or observations, reducing precision 
and changing the representation ofdata. 

 
Principle #5.1: Reduce number of data 

items 
Often the data scientist can retrieve accurate 

results by looking at data samples or by using 
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aggregated data. Data can also be categorized (or 
clustered) into groups, such that different 
attributes are relevant for some about the correct 
class labels. Uncertainty sampling has been 
employed successfully for margin-based 
classifiers such as Support Vector Machines 
(SVMs) 

. Standard sampling techniques can also be 
helpful to reduce the amount of data. One of 

the simplest, but often sufficient approaches is to 
conduct simple random sampling—choosing 
each data point with the same probability 
without replacement of selected data points. In a 
case study on predicting conversion probabilities 
for two online retailers, Stange and Funk could 
show that only 1% of the  data available to them 
was enough to achieve the optimal tradeoff 
between accuracy and the cost of collecting and 
processing the data. Stratified sampling is an 
appropriate sampling technique if groups are 
homogeneous, that is, data within groups has 
lower variance than data from distinct groups. 
One could also employ density-based sampling, 
for instance, assign samples with lower density a 
higher probability. This is useful if data from 
rare regions is highlyimportant. 

 
Principle #5.2: Reduce number or precision 

of attributes 
The dataset might contain attributes that are 

irrelevant for the analysis. These attributes can 
be safely neglected. The relevance might depend 
on the type of data. For many text mining 
problems very frequent words—so-called stop 
words, such as “and”, ”the”, “is”, ”are”—can be 
ignored. In fact, removing unnecessary or noisy 
attributes such as stop words is groups but not 
for others. A group might also be often 
recommended . More generally, described 
using an average or median value. The grouping 
itself might be obtained by clustering 
algorithms, for instance, documents can be 
summarized using centroids obtained through 
clustering. Intuitively, one should maintaindata 
 thatismostrelevanttoachieveacertaintask.Actie 
learning seeks to incrementally acquire relevant 
samples for learning. Thus, rather than having a 
passive model (or learner) that just uses the 
training data as given, an active learner might 
ask explicitly for data that is expected to yield 
maximal improvement in learning. Active
 learning is typically used in determining 

what data to collect. But the idea of active 
learning might also be used to assess the 
relevance of data and filter data accordingly. A 
model can  be trained using active learning by 
incrementally adding the most important data 
items of the full dataset. The learning process 
might be stopped if there is no more data that 
improves the model beyond a small threshold. 
Unused data, which does not improve the model 
significantly, could then be discarded. 
Uncertainty sampling is the most prominent 
technique in active learning in the context of 
classification . It seeks to obtain labelled  data,  
where there is  most  uncertainty dimensionality 
reduction can be achieved by feature selection 
and extraction as well as type transformation 

. Feature selection techniques encompass filter 
and wrapper methods as well as their 

combination. Filter models assess the impact of 
features by some criterion independent of the 
model. Wrapper models train the model using a 
subset of features. An example of a filter model 
is the use of predictive attribute dependence, 
where the idea is that correlated features yield 
better outcomes than uncorrelated ones. 
Therefore, the relevance of an attribute might be 
determined by assessing the classification 
accuracy when using all other attributes to 
predict the attribute. These techniques can be 
employed to remove attributes that do not reach 
a minimum relevance threshold.  Since many of 
the techniques are of heuristic nature, the impact 
of the removal of data that is deemed irrelevant 
should be tested, for instance, by comparing 
models being trained on the full and the reduced 
attribute set. Attribute reduction can also lead to 
an increase in accuracy, e.g., for decisiontrees 

Feature  extraction is  often performed  
through axis rotations in away that axesaresorted 
according to their ability to reconstruct data with 
minimal error. 

  
Axes with negligible impact on data 

reconstruction can be removed. The derived 
dataset can often be used to train a model or it 
might be used to reconstruct the original data, 
which in turn is used for training. The prior 
approach is preferable, since a lesser volume of 
data must be processed. Prominent techniques 
include singular value decomposition (SVD), 
and a special case called principal component 
analysis(PCA). 
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SVD and similar techniques for feature 
extraction solve an optimization problem. This 
can be time consuming, making potential
 energy savings questionable. Random 
projections , where data is projected onto 
random manifolds, are a moresimple 

and efficient dimensionality reduction 
technique. However, to  achieve  the same 
 approximation guarantees more dimensions 
are needed than for SVD. Random projections 
preserve Euclidean distances according to the 
Johnson-Lindenstrauss Lemma as well as 
similarity computed using dot  products,  but 
random projections (as well as other 
dimensionality reduction techniques) do not 
preserve metrics such as the Manhattan distance. 
Therefore, some care is needed to ensure 
 correct outcomes, when applying 
dimensionality reduction techniques. There is 
also empirical evidence comparing learning 
outcomes on the original data to outcomes on the 
data with reduced dimensionality. 
Unfortunately, the  comparison neglects metrics 
relevant to energy, e.g., computation time. 

Aggarwal describes dimensionality reduction 
with type transformation as the change of data 

from a more complex to a less complex type. For 
instance, graphs can be expressed as 
multidimensional data that might potentially be 
easier (and faster) to process. Time series can 
also be transformed to multi- dimensional data 
using the Haar Wavelet Transform or Fourier 
Transformation that both express the data using 
a (small) set of orthogonal functions. This form 
of data compression typically implies a loss 
ofprecision. 

Often, a dataset might only contain a few 
informative attributes and, therefore, the loss of 
precision might be very small, while achieving a 
substantial amount of data reduction. A high 
level understanding of the data mining task helps 
the data scientist choose a suitable 
dimensionality reduction technique. A technique 
might distort some instances more than others, 
and a small number of instances that are very 
different in the original context can be very 
similar in the space with reduced dimensions. 
For tasks like outlier detection this can be 
inacceptable, since outliers might be 
transformed so that they are not identifiable in 
the transformed data. Other tasks such as 
segmenting data into unspecified groups 

(clustering) might be less impacted by altering a 
few instances in a non-desirable way. 

  
Principle #5.3: Change data representation 
Data can be described in many ways without 

any loss of information, using lossless 
compression algorithms . This means that data is  
transformed among different representations 
without any effect on the minable knowledge. 
The green data scientist should prefer the 
representation that requires the least amount of 
storage, the least amount of computational effort 
to process throughout the data mining task, and 
the least amount of computation to create from 
the original data description. 

A sequence of can be written more compactly 
as . Another form of encoding is difference 
encoding, where differences between two 
elements are stored, e.g. Difference encoding is 
often beneficial for time-series data, where 
commonly there is a strong dependency between 
consecutive data points. It is also possible to 
store only non-zero elements with indexes, e.g., 
the sequence 0,0,0,0,99,99 becomes 4:99, 5:99. 
In multiple dimensions such data structures are 
called sparse matrices. There are many 
applications where zero entries are common, 
e.g., document-term matrices representing 
textual documents and user-item matrices used 
to derive recommendations. 

Numerous compression algorithms can be 
used to alter the  data representation:  
 General purpose algorithms such as 
Lempel-ziv as well as algorithms tailored  to  
specific  types  of  data.  Sakr,  for instance,
 surveys  algorithms  for  XML data 
compressions. A dataset can be compressed in 
such a way that the entire dataset must be 
decompressed to access a single element. A 
compressed dataset might also allow for even 
faster access and manipulation of data than 
non-compressed data. For large matrices in a 
sparse matrix representation, for instance, some 
manipulations such as multiplication of two 
matrices are often faster. Compression and 
decompression also consume energy and, thus, 
data compression might or might not be 
beneficial depending on the number of required 
compress and decompress operations. General 
purpose algorithms allow to specify how much 
effort they should invest into finding the 
representation that minimizes space. Some 
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algorithms take advantage of compressed 
representations and work on them directly, 
whereas  others  require an  uncompressed 
representation. In case data is transferred across 
networks or is infrequently accessed, 
compression is even more appealing. 

 
Principle #5.4: Accurate specification of 

attributerequirements 
Whereas discrete attribute values stem from a 

fixed set of values, attributes with continuous 
values are stored with a specific precision. The 
precision of individual attributes as well as the 
set of possible values can be defined by 
specifying an attribute type. For example, for an 
attribute containing temperature measurements, 
a data scientist might specify a precision of 
0.001 degrees and a range of feasible values such 
as [0,100] as so called “domain constraint” in 
database systems . As a next step a data typecan 
bechosenthatmeetstheserequirementsandusesthe 
least amount of storage—for instance, databases 
provide a set of data types according to the SQL 
standard, whereas programming languages 
usually 
followtheIEEEstandardsforfloatingpoint,integer
, and other data types. The data type also 
determines the amount of storage and impacts 
the time and energy to conduct operations on 
data. The green data scientist should specify 
reasonable requirements. Choosing 
inappropriate types might more than double the 
amount of needed storage. For example, 
choosing an integer type (64 bits) rather than a 
(single) byte type (8 bits) for an array of many 
values leads to an increase of a factor of almost 
eight in memorydemand. 

Domain constraints depend on the data source, 
the range of the data, and the intended 
application: For sensor data, the accuracy is 
given by the maximum precision that seems 
achievable in the next years. For financial data, 
the needed accuracy might be given by the 
smallest unit, that is, one cent or one dollar. For 
time information, a precision up to milliseconds 
might not yield better outcomes than 
maintaining timestamps with hourly precision. 
For images, accuracy can be translated to the 
maximal resolution in terms of  number of pixels 
or color depth that is beneficial for theanalysis. 

 
 Data preparation andmodeling 

Principle #6: Execute common operations 
only once 

Data preparation should be structured in such 
way that common preparation operations for 
multiple models are executed only once. For 
example, it can be reasonable to store a version 
of pre-processed data  after general 
transformation and cleaning steps have been 
performed. The principle of factoring out 
common operations is already known, for 
instance, in the context of the 
Extract-Transform-Load (ETL) process 
optimization for data warehouses .The 
Ideaofstoringtemporaryresultshasalsobeenapplie
d in the  context  of  ETL  processes and  it  is  an 
integral part of the distributed data processing 
for Map- Reduce jobs. In both cases, the goal is 
fault tolerance rather than energy
 optimization. Strategies for identifying data  
processing  results likely to  bereused and thus 
worth storing have been investigated, too for 
instance, for Map-Reduce jobs. 

 
Principle #7: Choose models that enable 

discarding of data or low energy storage 
Data lifecycle management has embraced the 

idea of moving data from high-cost to low-cost 
storage, for instance, moving data between 
storage tiers based on the value of data . Energy 
consumption and accessibility of stored data are 
typically negatively correlated: The easier it is to 
access data the more energy is required to 
maintain the data. Keeping data on a (magnetic) 
tape storage is much more energy efficient than 
keeping the same amount of data in the main 
memory of a computer. The former consumes 
energy only upon access, whereas main memory 
consumes energy even if no data is accessed. By 
her choices the data scientist determines the 
level of accessibility to data and thereby also the 
type of storage and amount of energy needed. 
The data scientist should thus be able to assess 
the relevance of data (over time) and assess the 
possibility to discard (older) data, compress 
(older) data, or work on summarized data. The 
availability of (old) data impacts the 
methodology that can be chosen, and the chosen 
methodology might also impact the data that 
must be stored. This is a key concern for long 
running systems, where data accumulates over 
time and models can be adjusted from time to 
time using newly available data. Some models 
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can be trained incrementally using online 
learning algorithms, while others require the full 
dataset including all prior data, even in case only 
minor updates should be made due to new data 
using offline learning algorithms. For some 
models online as well as offline algorithms exist. 
Consider a system that classifies messages as 
spam or not spam. Such a  system can be built by 
training a model based on previously classified 
messages. Since spammers adjust their strategies 
and style of messages, the system needs 
continuous updates—that is, learning. Whereas 
in an online learning scenario, data might be 
discarded after training the model, in the offline 
learning scenario it has to bekept. 

Minimizing data access and thereby allowing 
to move data to energy friendly mediums is a 
viable option. But discarding data is a risky 
endeavor. What if the existing model should be 
replaced by a new model? Is it possible to 
change a model when all historic training data 
has been discarded? A careful assessment and 
management of risks is necessary. Various 
techniques from the domain of machine learning 
support reducing the need to keep data. One way 
is to use transfer learning by generating training 
datafromtheexistingmodelforanewmodel,thatis, 
to   create   labeled   data   in   case   unlabeled   
data is available or can itself be generated. The 
disadvantage of this approach is that the 
generated labels are usually less accurate than 
the labels of the original dataset. Training data 
for the new model might still be highly 
beneficial despite transferred knowledge, but 
transfer learning can help reduce the amount of 
data needed to achieve good performance. 
Furthermore, training data can be enhanced by 
artificial training data that are a modification of 
existing data, thereby leading to improved 
results . Marginal returnsdecrease 

with  additional  data  , and the  impact   in 
performance of having to retrain a new model 
might be small, even if just a small fraction of all 
data is retained. 

 
Principle #8: Include only promising 

models and energy efficient algorithms 
The traditional model selection process 

focuses almost exclusively on picking the model 
that yields the best results in terms of data 
mining-task-specific metrics such as accuracy or 
F-score for classification. A data scientist can 

base her model selection by comparing such 
metrics using empirical and theoretical 
comparisons (on similar datasets). The green 
data scientist, however, should also take into 
account energy consumption due to training, 
operating, and potentially data storage. Minor 
differences in task specific metrics might still be 
tolerable according to overall business 
objectives. It is not recommended to use all 
model and optimization algorithms as part of the 
computational selection process, because this 
leads to high energy costs. Ideally, the model  
candidates (and optimization algorithms) are 
limited to models that are likely to yield good 
results in terms of the desired metrics including 
energy efficiency. To this end, theoretical and 
empirical evidence should be leveraged. 

A data scientist faces the choice of selecting 
model candidates and (hyper)parameter 
optimization algorithms. Energy costs are often 
determined by the effort to train and apply the 
model, that is, for predictions. 

 
Principle #8.1: Leverage theoreticalinsights 
Existing literature only gives limited advice on 

how to select the best methods for a dataset 
without trying them on the  dataset  at  hand.  
Manning  et  al. advocate the use of high bias 
classifiers if little data is available. Properties of 
the learning algorithm are not the only factor 
impacting energy consumption. The number of 
hyperparameters and the effort to optimize these 
parameters also play a vital role. There are little 
theoretical foundations with respect to the best 
choice of hyperparameter optimization methods. 
The field is subject to current research . One 
theoreticalinsight is that obvious and intuitive 
techniques such as a systematic grid search 
might be inferior even to unstructured random 
search. 

Models to describe the energy efficiency 
ofsystems and algorithms have been discussed 
from different perspectives  such  as  power  
management ,  energy per  low level operation 
(e.g.,  low level operations per Watt), or models 
involving  hardware  components such as  CPUs  
and  memory .  However,  none  of these metrics 
seems suitable for quantifying the energy 
efficiency of models in the context of data 
mining. A data scientist usually works on a 
higher level of abstraction than individual 
hardware components and low-level CPU 
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instructions that are the focus of many of these 
metrics. Theoretical computer science analyses 
algorithms in terms of running time. Running 
time, or time complexity, is the count of abstract, 
higher level operations needed to solve a task. 
The notion of time complexity can be applied to 
a single computer but  also to a cluster of 
computers. In the field of parallel computing, 
one might simply aggregate the operations of all 
computers. This neglects costs due to 
information exchange between computers. 
Distributed  systems such as clusters running 
data analytics frameworks such as Hadoop or 
Spark can also involve significant costs due to 
communication or idling (waiting for work).
 Generally, costs for communication, 

computation,  and  idling are  tradeable .  Many 
existing data mining algorithms are analyzed 
using the classical time complexity metric for a 
single computer, where the running time is often 
expressed as a function of the number of 
observations in a dataset and the number of 
dimensions. From the perspective of a green data 
scientist, algorithms with small time complexity 
seem preferable. But theoretical bounds might be 
coarse and, furthermore, often they neglect 
constants as part of the analysis process that 
might be of practical relevance. Therefore, 
empirical investigation might be 
moremeaningful. 

 
Principle #8.2: Leverage empiricalknowledge 

To the best of our knowledge a thorough 
comparison of learning algorithms for model 
parameters with respect to energy related 
concerns does not exist. Some works do provide 
empirical results for running-time of a few 
models, e.g.,in the field of density based 
clustering. Running time seems to be a viable 
surrogate metric for measuring energy 
consumption of models for training and 
operation. For other metrics such as accuracy, 
multiple publications provide comparisons . 

Hyperparameters often have  a profound 
impact on model performance . To optimize 
hyperparameters multiple strategies exist. Some 
techniques try  to reduce  the  time  (and  energy)  
for  modelselection by training models on 
samples of data and predicting performance on 
the full dataset. Some optimization techniques 
allow to specify time constraints that guide the  
model  selection  process.  Unfortunately, 

empirical comparisons do not report on 
theoverall energy consumption for training, but 
rather focus on other metrics such as accuracy. 

 
5. Conclusion and future work 
We introduced principles for green data 

mining based on the CRISP-DM methodology. 
Our principles apply to various phases of the 
process, impacting managerial decisions (e.g., 
make-or-buy) as well as technical questions 
(e.g., which model to use to conserve energy?). 
Creating a platform allowing to share 
information on model performance based on 
hyperparameter settings and datasets will not 
only be valuable for fellow data scientists, but 
also for improving hyperparameter learning  
algorithms  . Aside from empirical contributions, 
theoretical insights related to model selection 
could advance the field of green data mining. 
Furthermore, a detailed evaluation of the 
proposed principles can help in theirapplication. 
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